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Introduction

Many patients suffer from maxillofacial bone tissue 
defects.1 Scaffolds have the ability to induce tissue forma-
tion.2 Scaffolds for the maxillofacial area need to fulfill 
functions that include activating bone formation and pre-
venting infections during bone formation.3, 4 Activation of 
bone formation is the main function of scaffolds.5

Composite scaffolds are attractive for bone tissue engi-
neering because they have good ability to support new 
bone formation.6 This research examined composite scaf-
folds for bone formation in maxillofacial bone tissue 
engineering.

Mimicking is often used in the design of scaffolds that 
show an ability to induce new tissue formation similar to 
natural tissue.7, 8 Mimicking was used to design tissue 
engineering scaffolds in this research.

Bone remodeling is a lifelong process in natural mature 
bone tissue that normally has two main minerals: 
hydroxyapatite and tri-calcium phosphate (CP).9 
Hydroxyapatite is an insoluble component that plays a 
role in bone formation.10 Tri-CP is a soluble component 
that is present in the early stages of bone formation.11

CP has been studied for ability to mimic extracellular 
matrices (ECM) as ex vivo biomaterials for heterotopic 
ossification.12 Another previous study found that CP can 
activate bone formation.13 Hence, a hydroxyapatite-tri-CP 
compound was used to create scaffolds in this research.

Due to its positive charges, chitosan functions as a sub-
strate for mineralization that is important for bone remod-
eling.14, 15 Chitosan is promising as an antimicrobial 
material in tissue engineering.16 Chitosan was fabricated 
into scaffolds that specifically focused on their function as 
a substrate for mineralization in this research.

In this research, CP and chitosan were selected to create 
scaffolds based on bone mimicking. The morphology and 
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performance of those scaffolds were evaluated for their 
use in maxillofacial tissue engineering.

Materials and methods

Chitosan preparation

Shrimp chitosan powder (Marine Bio Resources Co. Ltd) 
was dissolved in 0.1 M acetic acid at a ratio of 2% chi-
tosan. After dissolving the chitosan, the solution was 
stirred for 24 h and then filtered.

Construction of CP with chitosan

CP powder at a ratio of hydroxyapatite to tri-CP of 1:1 was 
added into the chitosan solutions at concentrations of 2%, 
4%, 6%, and 8% (w/v) before stirring. The solutions were 
injected into 1 M NaOH. Each mixture was rinsed with 
dH2O three times to create an adjusted pH-neutral solution 
to form microfibrils before filtering. The microfibrils were 
centrifuged at 1500 rpm for 10 min. The microfibril scaf-
folds were cut into a thickness of 2 mm and a diameter of 
about 10 mm before freeze drying. The experiment was 
divided into five groups (Table 1).

Morphology analysis

All scaffolds were studied using scanning electron micros-
copy (SEM), (Quanta400, FEI, Czech Republic). The sam-
ples were pre-coated with gold using a gold sputter coater 
machine (SPI Supplies, division of Structure Probe Inc., 
Westchester, PA, USA). The SEM magnifications were 
100 x, 500 x, and 30,000 x. The pore size of the scaffolds 
was evaluated using the Image J program with SEM pic-
tures taken randomly from three areas of each scaffold. 
The pore size distribution (n = 25) was calculated using 
the QtiPlot program.

Swelling properties

The scaffolds were soaked in phosphate-buffered saline 
(PBS) solution at 37°C, at different times (15, 30, and 60 
min). The scaffolds were weighed before and after soaking 
with PBS to calculate the weight increases following the 

equation (Ws – Wd)/Wd × 100, where Ws and Wd are the 
weights of the swollen scaffolds and the dry scaffolds, 
respectively.12

Degradation analysis

The scaffolds in each group were incubated with lysozyme 
(4 mg/ml of PBS) at 37°C, for different times of 0, 5, 10, 
15, and 20 days. The scaffolds from all groups were 
weighed both before and after soaking to quantify the 
weight loss and degradation rates.17

Cell culturing

MG-63 osteoblast cell lines were cultured on the scaffolds. 
The cells were maintained in alpha-MEM medium (α-
MEM, Gibco™, Invitrogen, Carlsbad, CA, USA) with 
10% fetal bovine serum, 1% penicillin/streptomycin, and 
0.1% Fungizone®. In the differentiation stage the cells were 
induced with osteogenic-supplemented medium (20 mM  
β-glycerophosphate; 50 µM ascorbic acid; and 100 nM 
dexamethasone, Sigma-Aldrich).

Cell proliferation, WST-1

Cell proliferation was assessed using a WST-1 Assay Kit 
(Roche Diagnostics GmbH, Mannheim, Germany). Cell 
proliferation was performed on days 1, 3, 5, and 7, follow-
ing the manufacturer’s protocol. The scaffolds were 
washed with PBS and fresh media (850 µl) containing 
10% WST-1 reagent. They were incubated for 50 min with 
the absorbance continually measured at 450 nm using a 
microplate reader (Biotrak II, UK).

Cell viability

Cell viability was evaluated by fluorescein diacetate stain-
ing after days 3 and 5. The scaffolds were removed and the 
media rinsed with PBS twice. Fresh media was added to 
the scaffolds, then 5 µl of 5 mg/ml acetone was added and 
the mixtures incubated at 37°C for 5 min. The scaffolds 
were then rinsed with PBS and the live cells observed 
under a confocal microscope.18

Alkaline phosphatase activity

Alkaline phosphatase (ALP) activity was measured by 
Alkaline Phosphatase LiquiColor (Human, Germany) on 
days 7, 14, and 21. The cells within the scaffolds were 
lysed with a solution of 1% TritonX in PBS, with three 
freeze-thaw cycles at −80°C for 1 h and at room tempera-
ture for 1 h. The lysed cells in the scaffolds were centri-
fuged to obtain supernatant solutions for analyses with an 
ALP kit following the manufacturer’s instructions.19

Table 1.  The experimental groups.

Group Details

Chitosan Chitosan without calcium phosphate
2% CP Chitosan with 2% of calcium phosphate (W/V)
4% CP Chitosan with 4% of calcium phosphate (W/V)
6% CP Chitosan with 6% of calcium phosphate (W/V)
8% CP Chitosan with 8% of calcium phosphate (W/V)

CP: calcium phosphate.
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Total protein synthesis

The cell lysis solutions were analyzed for protein content 
on days 7, 14, and 21 following the manufacturer’s instruc-
tions (Pierce BCA Protein Assay kit, Thermo Scientific, 
USA). Bovine serum albumin was used to plot the stand-
ard curves.

Calcium content

The calcium content was evaluated with a calcium colori-
metric assay kit (BioVision). The cell lysis solution was 
used for calcium detection following the manufacturer’s 
instructions.

Histology analysis

The scaffolds were stained with hematoxylin and eosin 
(H&E) on days 3 and 5. The cells within the scaffolds were 
fixed with 4% formaldehyde at 4°C for 24 h after which 
the scaffolds were placed into paraffin and cut into 5 µm 
slices. The cut scaffolds were placed on glass slides, 
stained with H&E, and observed under microscopy.

Statistical analysis

All data are shown as mean ± standard deviation. The 
samples were measured and statistically compared by one-
way analysis of variance and Tukey’s honestly significant 
difference test (SPSS 16.0 software package). A p value < 
0.05 was accepted as statistically significant.

Results

Morphology of scaffolds

The chitosan-CP solutions were adjusted with NaOH 
and examined for fibril bundles (Figure 1(a)) and after 
rinsing with dH2O (Figure 1(b)). The chitosan and the 
2% CP had loose structures compared to the others 
(Figures 1(c) and 1(d)). More compact structures were 
found in 4%, 6%, and 8% CP in scaffolds (Figures 1(e), 
1(f), and 1(g)).

Some of the fibril structures appeared as dense clusters 
(Figure 2(a)) due to the deposition of hydroxyapatite from 
the CP on the chitosan fibril templates.20 The pore size 
analysis showed the 4% CP had the largest pore size of 
around 437.54 um (Figure 2(p)). The smallest pore size 
was found in the 6% CP at around 199.27 ± 24 um. 
Chitosan 2% CP and 8% CP had average pore sizes of 
319.75 ± 23, 391.56 ± 22, and 288.45 ± 30 um.

Swelling properties and degradation

The results showed three swelling patterns, high, fair, and 
poor (Figure 3(a)). Chitosan had high swelling. The 2% CP 

had fair swelling whereas the 4%, 6%, and 8% CP had 
poor swelling. The chitosan with CP demonstrated higher 
degradation than without CP (Figure 3(b)).

Total protein synthesis and cell viability

On day 7, the total protein of the 6% and 8% CP was higher 
than in the others (Figure 4(a)). The 8% CP had the highest 
protein synthesis on day 14. The 2% CP showed a cluster 
of viable cells with an abundance of cells in the 6% and 
8% CP (Figure 4(b)).

Cell proliferation and ALP activity

On day 1, the 2% CP showed the highest cell proliferation 
(Figure 5(a)). On days 3 and 5, the 8% CP had the highest 
cell proliferation compared to the others. On day 7, the 4% 
CP had higher cell proliferation than the others. On day 7, 
the chitosan with CP had higher ALP activity than the chi-
tosan alone (Figure 5(b)).

Calcium content and histology

On day 7, the 8% CP had lower calcium synthesis than 
the others, which was different than the 2% and 6% CP 
(Figure 6(a)). On day 3, good cell adhesion and elonga-
tion with dense structures were found in the 2%, 4%, 6%, 
and 8% CP (Figure 6(b)). In the chitosan, the cells formed 
a globular shape; however, the others formed elongated 
shapes. On day 5 the scaffolds in all groups showed good 
cell migration and attachment to the scaffolds.

Discussion

Mimicked biomineralization based on bone 
remodeling

Chitosan was used as the soft template for biomineralized 
bone remodeling formations.21 The mixtures were cre-
ated with mimicry to ensure fibril formation similar to 
the ECM of bone.22 Various CP were deposited on those 
templates,23 and the chitosan fibrils with deposition of CP 
showed similar biomineralization as bone remodeling.24 
An earlier study demonstrated the suitable pore size of 
bone tissue engineering scaffolds was around 350 to  
400 µm.25 Our scaffolds were within this range and 
showed pore sizes suitable for bone formation, especially 
the 2% CP mixture.

Physical performance of the mimicked 
biomineralized scaffolds

The chitosan with high concentrations of CP mixtures 
had low swelling. One study found the positive charges 
of chitosan interacted with the negative charges of the 
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filler particles,26 which in turn reduced the swelling prop-
erties. The largest concentration of 8% caused the CP to 
become dense cluster aggregations, which caused a 
reduction in degradation.27 Chitosan composite scaffolds 
with hydroxyapatite particles in the range of 2% had suit-
able swelling and degradation for new tissue formation.28 
Our research showed similar results because our 2% CP 
had an optimal physical performance balance of fair 
swelling and low degradation, which is a combination 
suitable for tissue formation.

Biological performance of the mimicked 
biomineralized scaffolds

CPs are involved in the inducement of cell proliferation 
that is related to the enhancement of cell adhesion.29 
Chitosan with the various CP mixtures performed 
strongly in terms of enhancing cell adhesion and prolif-
eration.30 CP has the ability to enhance biomarkers for 
ALP activity and calcium content.31 In our study, the 
scaffolds of chitosan with 2% CP showed the greatest 

Figure 1.  The chitosan/calcium phosphate (CP) solution adjusted with NaOH (a) and after rinsing with dH2O (b). All groups of 
scaffolds: (c) chitosan, (d) 2% CP, (e) 4% CP, (f) 6% CP, and (g) 8% CP. Scale bar 10 mm.
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Figure 2.  Morphology of scaffolds: (a), (b), (c) chitosan, (d), (e), (f) 2% calcium phosphate (CP), (g), (h), (i) 4% CP, (j), (k), (l) 6% 
CP, (m), (n), (o) 8% CP, and (p) pore size distribution.
Magnification of (a), (d), (g), (j), (m) images 100 x, (b), (e), (h), (k), (n) images 500 x, and (c), (f), (i), (l), (o) images 30,000 x.

Figure 3.  (a) The swelling ratios and (b) degradation.
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Figure 4.  (a) The protein synthesis at days 7, 14, and 21, (b) the cell viability in the scaffolds, at days 3 and 5.
Scale bar 200 µm.

Figure 5.  (a) Cell proliferation on the scaffolds on days 1, 3, 5, and 7 and (b) the alkaline phosphatase (ALP) activity in scaffolds at 
days 7, 14, and 21.
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suitability for bone formation because they had the 
unique biomarkers of ALP activity and calcium content. 
Those biomarkers are indicators for the potential of bone 
formation.32

Conclusion

In this research, chitosan composite with various concen-
trations of CP was fabricated into mimicked biomineral-
ized scaffolds based on bone remodeling. The morphology 
of the scaffolds was similar to biomineralization. The scaf-
folds of chitosan with the 2% CP compound had optimal 
physical and biological performance for bone formation. 
We conclude that mimicked biomineralized scaffolds 
based on bone remodeling are promising for maxillofacial 
tissue engineering. 
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