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Abstract 

 Secondary alveolar bone grafting is routinely practiced as the alveolar cleft treatment in cleft lip and cleft palate patient. Most 

commonly, bone for alveolar bone grafting is harvested from the iliac crests. As such, iliac crest harvesting procedures can result 

in paresthesia, hypersensitivity, infection and pelvic instability. In order to avoid these adverse effects, tissue engineering 

strategies may eliminate donor site morbidity by resorbable collagen sponge resulted in reduced donor site morbidity and 

decreased donor site pain intensity and frequency. The aim of this study was to investigate the effects of pepsin soluble collagen 

(PSC) from skin of brownbanded bamboo shark on the physical property of chitosan scaffolds. The collagen was characterized as 

type I collagen by Fourier transform infrared (FTIR) spectra and physical properties were studied in terms of morphology, water 

swelling and biodegradation of scaffolds. Physical property data were analyzed by Mann-Whitney U Test and using SPSS 

statistics version 16.0 program. The result of FTIR showed triple-helical structure of collagen type I. SEM demonstrated 

homogeneous microstructure and presence of interconnected micropores of both groups. Water swelling of PSC coated chitosan 

scaffolds was lower than chitosan scaffolds (p<0.001), whereas biodegradation tend to be lower (p>0.05). Biodegradation rates 

of both groups between different time points were statistically significant (p<0.05). In conclusion, PSC collagens improve 

physical properties of our novel chitosan scaffolds. (Supported by PSU grant # 950/427) 
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Introduction 

 

The alveolar cleft is a bony defect that is present 

in 75% of the patients with cleft lip and palate 

(Aranaz et al., 2009). Secondary alveolar bone 

grafting is routinely practiced as the alveolar cleft 

treatment to allow proper eruption of the lateral or 

canine teeth through the cleft segment and to close 

the oronasal fistula. Most commonly, bone for 

alveolar bone grafting is harvested from the iliac 

crests (Cho-Lee et al., 2013; Goudy, Lott, Burton, 

Wheeler, & Canady, 2009; Moreau, Caccamese, 

Coletti, Sauk, & Fisher, 2007). Therefore, iliac crest 

has been described as being the gold standard for 

secondary grafting. However, the harvest procedure 

imposes a heavy burden on the patient especially at 

the donor site (Swan, 2006). As such, iliac crest 

harvesting procedures can result in paresthesia, 

hypersensitivity, infection and pelvic instability 

(Kortebein, Nelson, & Sadove, 1991; Younger & 

Chapman, 1989; Janssen, Weijs, Koole, Rosenberg, 

& Meijer, 2014). In order to avoid these adverse 

effects, tissue engineering strategies may eliminate 

donor site morbidity by bypassing the harvesting 

procedure, such as synthetic bone or stem cells with 

scaffold. Tissue engineering (TE) is a 

multidisciplinary field that attempts to restore the 

function of diseased or damaged tissues through the 

use of cells, biomaterials and biologically active 

molecules (Becker & Jakse, 2007; Drosse et al., 

2008; Meyer, Joos, & Wiesmann, 2004; Vacanti & 

Langer, 1999). Bone tissue engineering is the 
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process of regeneration of functional tissue that can 

be used to treat a bony defect (Peppo et al., 2013). 

The scaffolds should act as a framework for 

supporting growth and functions of desired tissue as 

well as maintaining shape and contour of the organ 

(Kim, Kim, Oh, Han, & Shin, 2009). Two features 

of the scaffolds that influence cellular responses are 

3-D architecture and the physico-chemical properties 

of their surfaces. The scaffolds should have the 3-D 

structures with highly porous and interconnected pore 

network for cell in-growth and transporting nutrients 

and metabolic waste. Chitosan presents superior 

tissue biocompatibility due to its structure being similar 

to glycosaminoglycan in an extracellular matrix 

(Arpornmaeklong, Suwatwirote, Pripatnanont, & 

Oungbho, 2007). Moreover, it has been proven to 

demonstrate properties needed for bone tissue 

engineering which include having biodegradability, a 

porous structure, suitability for cell ingrowth, 

osteoconduction, and an intrinsic antibacterial nature 

(Thuaksuban, Nuntanaranont, Pattanachot, 

Suttapreyasri, & Cheung, 2011). Collagen is a 

natural protein that is the main component in 

extracellular matrix (ECM) in tissue. Especially, in 

bone tissue, collagen acts as the template for calcium 

phosphate deposition. Collagen can enhance stability 

and strength of the bone (Matsuura et al., 2014). 

Therefore, collagen is a popular material for tissue 

regeneration because collagen has biological 

functionality that cells can recognize. Such 

functionality can enhance cell adhesion lead to induce 

tissue regeneration. Alternative sources of collagen 

especially from the shark skin can be used as an 

excellent source of collagen with the unique 

characteristics. The aim of this study is to produce a 

chitosan scaffolds coated collagen from the skin of 

shark for bone tissue engineering in cleft palate 

patients.     

Materials and methods  

 

1. Fabrication of chitosan scaffold 

 To construct the scaffolds, chitosan (Sea Fresh 

Chitosan [Lab] Co., Thailand, DD=85%, 

Mw=57,000 Dalton) was dissolved in 0.2 M acetic 

acid in the final concentrations of 2% (v/w). Then 

they were injected with syringe into 1 M NaOH. 

Under these conditions a fibril-like chitosan was 

formed. The fibril-like chitosan was filtered through 

a sheet cloth, and placed in 15 ml centrifuge tubes 

and centrifuged at 4,500 rpm for 40 min then kept 

at 4°C for 24 hr and subsequently frozen at -20°C.  

After 24 hr, the scaffolds were stabilized by 

immersing in 96% alcohol for 1 hr, 1 M NaOH for 

5 min, and 70% alcohol for 12 hr. The thus formed 

scaffolds were sectioned into slices with 3 mm of 

thickness. They were dried at 37°C for 12 hr. 

2. Isolation of Pepsin soluble collagen (PSC) from 

the skin of brownbanded bamboo shark 

(Chiloscyllium punctatum)  

 2.1 Shark skin preparation 

   Skin of brownbanded bamboo shark 

(Chiloscyllium punctatum) with the size of 70–100 

cm was obtained from Blue Ocean Food Products 

Co., Ltd. in Samutsakhon Province of Thailand. The 

frozen shark skin (10 kg) packed in polyethylene 

bags (1 kg/bag) was placed in ice at a ratio of skin 

to ice of 1:2 (w/w) using a polystyrene box as a 

container.  The skin was kept at -20◦C until use, 

usually within one week. To prepare collagen from 

shark skin, the frozen skin was thawed with running 

water until the core temperature reached 5◦C. 

Thereafter, it was washed with cold tap water 

(≤10°C). The residual meat on shark skin was 

removed by knife and washed with cold tap water  
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until any residual smell of ammonia disappeared. The 

clean shark skin was cut into small pieces (1.0 ×  1.0 

cm
2
) using a pair of scissors. 

 2.2 Pretreatment of shark skin 

  To remove non-collagenous proteins, the 

prepared shark skin was mixed with 0.1 M NaOH to 

alkali solution at the ratio of 1:10 (w/v). The 

mixture was continuously stirred for 6 hr. The alkali 

solution was changed every 2 hr. Then, the 

deproteinised skin was washed with cold water until a 

neutral or faintly basic pH of wash water was 

reached. 

 2.3 Extraction of Pepsin Soluble Collagen (PSC) 

   Pretreated skin was soaked in 0.5 M acetic 

acid with a solid to solvent at the ratio of 1:15 

(w/v) for 48 hr with continuous stirring using an 

overhead stirrer model W20 (IKA - Werke GmbH & 

CO.KG, Stanfen, Germany). The mixtures were 

filtered with two layers of cheesecloth. The residue 

was soaked in porcine pepsin (20 unit/g of residue) 

solution. The mixtures were continuously stirred at 

4◦C for 48 hr, followed by filtration with two layers 

of cheesecloth. The collagen in the filtrate was 

precipitated by adding NaCl to a final concentration 

of 2.6 M in the presence of 0.05 M tris 

(hydroxymethyl) aminomethane at pH 7.5. The 

resultant precipitate was collected by centrifugation at 

20,000 g at 4◦C for 60 min using a refrigerated 

centrifuge model Avanti J-E (Beckman Coulter, 

Inc., Palo Alto, CA, USA). The pellet was dissolved 

in a minimum volume of 0.5 M acetic acid and 

dialysed against 25 volumes of 0.1 M acetic acid for 

12 hr. Thereafter, it was dialysed against 25 volumes 

of distilled water for 48 hr. The resulting dialysate 

was freeze-dried and referred to as ‘‘Pepsin soluble 

collagen, PSC” (Benjakul et al., 2010). 

 2.4 Fabrication of PSC coat 2% chitosan 

scaffold 

   2% chitosan scaffold was transferred to 

0.05% PSC solution in 24 well-plate (PSC was 

dissolved in acetic acid and adjusted volume by 

PBS), kept at room temperature for 4 hr, then kept at 

4◦C for 24 hr, subsequently frozen at -20◦C for 24 

hr and transferred to freeze-dried  machine 

(SCANVAC) for 24 hr. 

3. Scaffolds characterization  

 3.1 Fourier-Transformed Infra-Red Spectroscopy 

(FTIR) 

   Infra-red spectra of the prepared collagen 

was obtained in a spectrometer (Spectrum 100 

PERKIN ELMER) at the range of 4000 to 650 cm
–1

. 

Spectra were registered using attenuated total 

reflection infra-red spectroscopy (ATR-FTIR).  

 3.2 Scanning Electron Microscope (SEM) 

   The morphology of the scaffolds were 

observed using a JEOL JSM 6460 LV microscope 

under 20 kV. All samples were coated with a thin 

gold layer using a EMITECH K550 sputter coater. 

 3.3 Water swelling of scaffold  

   PSC coated chitosan scaffolds for test group 

and uncoated-PSC chitosan scaffolds for control 

group (n/group =9) were weighed using an 

electronic balance and placed in PBS for 5 min. After 

this period, all excessive water was removed and the 

scaffolds were weighed again. Water swelling of 

scaffolds were determined by using the following 

equation:    

  Swelling ratio = (Ww-Wd)/ Wd 

  Wd represents initial dry weight and Ww 

represents wet weight of scaffold.  

 3.4 Biodegradation of scaffold   

   To analyze the biodegradation of scaffold, 

they were incubated in a solution containing 

lysozyme, an enzyme taken to be essential in the 

dissolvement of chitosan. Scaffolds (n=9) were 

incubated for 7,14 and 21 days in 1× 10
4
 U/ml 

lysozyme in PBS (pH 7.4) at 37◦C. At the different 
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time intervals, the scaffolds were washed with double 

distilled water and were dried at 37◦C 48 hr. All 

scaffolds were weighed again. Biodegradation of 

scaffold were determined by using the following 

equation:  

  Percentage weight loss = (Wo-Wt)/ Wo ×  100 

  Wo represents the original weight and Wt 

represents the weight at the different time interval.  

 

Results and Discussion 

 

 Scaffolds characterization  

1. Fourier-Transformed Infra-Red Spectroscopy (FTIR) 

 FTIR spectra of PSC from the shark skin is 

shown in Figure1. The major peaks in the spectra of 

PSC from the skin of brownbanded bamboo shark 

were similar to those of collagen from others fish 

species (Muyonga, Cole, & Duodu, 2004; Nagai, 

Suzuki, & Nagashima, 2008; Wang, An, Xin, Zhao, 

& Hu, 2007). The amide A band PSC was found at 

3299 cm
-1

, respectively. This band is generally 

associated with the N–H stretching vibration and 

shows the existence of hydrogen bonds. When the 

NH group of a peptide is involved in a hydrogen 

bond, the position is shifted to lower frequencies. 

Amide B band of both collagens was observed at 

2939 cm
-1

, in agreement with that reported by Nagai 

et al. The sharp amide I band of PSC was observed at 

1630 cm
-1

, respectively. This band is associated 

with C=O stretching vibration or hydrogen bond 

coupled with COO
- 

(Payne & Veis, 1988). The 

amide I peak underwent a decrease in absorbance, 

followed by a broadening accompanied by the 

appearance of additional shoulders when collagen was 

heated at higher temperature (Bryan et al., 2007). 

This was reconfirmed by the ratio of approximately 1 

between amide III and 1454 cm
-1

 band of both 

collagens. Ratio of approximately 1 revealed the 

triple-helical structure of collagen (Krimm & 

Bandekar, 1986). The amide II of collagens 

appeared at 1546 cm
-1

, resulting from N–H bending 

vibration coupled with CN stretching vibration (Yan 

et al., 2010). 

            

 

  Figure 1 FTIR spectra of PSC from the skin of brownbanded bamboo shark. 

Amide A 

Amide B 

Amide I 

Amide II 

Amide III 
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2. Scanning Electron Microscope (SEM) 

 Figure 2 shows SEM micrographs of the 

chitosan and PSC coated chitosan scaffolds. Open 

pore structure with a high degree of interconnectivity 

can be observed. An ideal scaffold used for tissue 

engineering should possess the characteristic of a 

homogenous microstructure and suitable pore 

aperture. Scaffolds must be porous to allow ingrowths 

of cells and migration of vascular tissue. Since the 

addition of collagen increased chitosan pore sizes, 

cell viability and proliferation in these scaffolds might 

be improved. 

 

                     
                                    (a)                                                                  (b) 

Figure 2 SEM micrographs a) PSC coated chitosan scaffold b) chitosan scaffold 
 

3. Water  swelling of scaffold  

 Swelling ratio is shown in Figure 3. The chitosan 

scaffold showed the high water binding capacity and this 

property plays an important role in tissue regeneration 

(Park, Lee, Lee, & Suh, 2003). It could preserve a high 

volume of liquid within the porous structure, maintained 

their dimension, and further enhance the penetration of 

cells into the inner area of scaffold (Ngamwongsatit, 

Banada, Panbangred, & Bhunia, 2008; Park, Park, Kim, 

Song, & Suh, 2002; Shanmugasundaram et al., 2001). 

The PSC coated chitosan scaffold seem to decreasthe 

swelling ratio. As the morphological structure of scaffolds 

had fibril network structure in the porous. Such fibril 

network effected on decreasing of swelling ratio. This 

result was similar to the previous study that the swelling 

property of sponge-like matrice dependent on the network 

porous structure and microstructure of scaffold (Park  

et al., 2002).  

 

                      

 

 

 

 

 

 

 

Figure 3 The swelling ratio of scaffold in each group. Compairisons among group, analyzed by Mann-Whitney U test, n=9, (*P<0.05) 
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4. Biodegradation 

 The PSC coated chitosan scaffold had more 

stability from biodegradation than the chitosan 

scaffold. The result indicted that collagen could 

improve biodegradation of scaffold. Chitosan is 

mainly degraded by lysozyme (Vårum, Myhr,  

 

Hjerde, & Smidsrød, 1997) which is present in 

various human body fluids and tissue (Köse, Kenar, 

Hasirci, & Hasirci, 2003). The rate of scaffold 

degradation should mirror the rate of new tissue 

formation or be adequate for the controlled release of 

bioactive molecules(Aranaz et al., 2009). 

                    
 

Figure 4 Biodegradation of scaffold after digestion with lysozyme at Day 7, 14 and 21. Between different time point in each  

             group, P< 0.05, analyzed by Kruskal Wallis test, n=9 

 

Conclusions 

 

 By using the centrifuge method porous chitosan 

scaffold was successfully produced. Extraction of collagens 

from the skin of brownbanded bamboo shark could be 

achieved by pepsin solubilization. Modification of chitosan 

scaffolds by coatings with PSC from shark skin for bone 

tissue engineering was proposed in this study. PSC 

improved our novel chitosan scaffold physical properties. 

Further biological property investigations need to be carried 

out prior to in vivo studies in animal and cleft palate 

patients for future clinical applications. 
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