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Purpose: To evaluate the effect of a polymerization accelerator on the microtensile bond strength (μTBS) of etch-
and-rinse and self-etch adhesives to eugenol-contaminated dentin. 

Materials and Methods: Sixty flat dentin surfaces were prepared from human molars. Half of the specimens were 
restored with zinc oxide eugenol temporary cement (IRM) (eugenol-contaminated group) and the other half remained 
without restoration (control group). After 24-h storage, the cement was mechanically removed. Then the specimens 
in each group were further divided into three subgroups based on the application procedure of a polymerization ac-
celerator (p-toluenesulfinic acid sodium salt; Accel): no application, 10-s application, or 30-s application. After air 
drying, the dentin surfaces were bonded with either a three-step etch-and-rinse adhesive (OptiBond FL) or a two-
step self-etch adhesive (Clearfil SE Bond) and restored with composite. After 24-h water storage, the bonded speci-
mens were subjected to the μTBS test. Data were analyzed by three-way ANOVA and Dunnett’s T3 test (p < 0.05). 

Results: The eugenol-contaminated groups had significantly lower μTBS than the control groups with both types of 
adhesives (p < 0.05), and the application of Accel significantly increased the compromised μTBS to eugenol-con-
taminated dentin. Optibond FL presented significantly higher μTBS to eugenol-contaminated dentin than did Clearfil 
SE Bond (p < 0.05).

Conclusion: The application of a polymerization accelerator on eugenol-contaminated dentin prior to adhesive resin 
application increased the μTBS of both the three-step etch-and-rinse and two-step self-etch adhesive.
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The development of dental resinous materials has in-
creased the opportunity to choose resin composite res-

toration in routine clinical practice.8,30 Cavities can be 
prepared with minimal intervention and maximum preser-
vation of tooth structure, reliable bonding can be acheived 
to various substrates, and the restoration is often estheti-

cally pleasing for the patient. However, the application pro-
cedure of adhesives to the substrates is still quite sensi-
tive. It has been shown that the bond strength of adhesive 
resin to tooth substrate could be adversely affected by con-
tamination from blood39 and saliva,12,48 or by the remnants 
of temporary restorative materials.9,24
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Various clinical situations involve utilization of temporary 
restorative materials, such as the lack of clinical time, 
questionable prognosis, providing a seal during endodontic 
treatment, or waiting for a final restoration.8,31 Zinc oxide 
eugenol (ZOE) has been widely used as a temporary restor-
ative material in such situations because it provides an ex-
cellent cavity seal, is easy to handle and remove, has an 
analgesic effect as well as anti-inflammatory and anti-bacte-
rial properties.22,24,26,27,37 However, remnants of the euge-
nol on the dentin surface after temporary restoration re-
moval have been found to inhibit the polymerization 
process14,15,40 and reduce the degree of conversion of 
resin materials.5,6,18

Previous studies have shown that eugenol is the most 
potent inhibitor for polymerization of methyl methacrylate 
(MMA).6,15 Contamination on the dentin surface reduced 
the bond strength between the adhesive resin and dentin, 
which mostly occurred within the first 24 h.8,29,32,36 Thus, 
it is recommended not to use ZOE as a temporary restor-
ative material if composite is planned for the permanent 
restoration.8,24,47 On the other hand, several methods, 
such as mechanical removal techniques with pumice slurry 
and water, ultrasonic scaling and excavation,8,11 and chem-
ical removal techniques by using phosphoric acid, ethanol 
or EDTA solution,2,24,45 or delaying the permanent compos-
ite restoration,36 have been investigated in order to retrieve 
the compromised bond strength to eugenol-contaminated 
dentin. 

Recently, dentin surface pretreatment with the reducing 
agent, Accel (Sun Medical; Shiga, Japan), was introduced 
for application before placement of an adhesive root canal 
sealer after irrigation with NaOCl; like eugenol,14 NaOCl in-
hibits polymerization by competitively binding with free radi-
cals generated in the polymerization of resinous materials 
and causes premature chain termination.25 Accel contains 
p-toluenesulfinic acid sodium salt in ethanol, which can re-
store the redox potential of the oxidized dentin via free-radi-
cal scavenging.33 It has been reported that Accel applica-
tion could improve the bond strength of self-etch adhesives 
to NaOCl-treated dentin.33,41 Additionally, p-toluenesulfinic 
acid sodium salt can act as a catalyst in polymerization re-
actions.4,38 Application of Accel solution to eugenol-contam-
inated dentin might be effective for improving bond strength.

Therefore, this study evaluated the effect of p-toluenesul-
finic acid sodium salt application on the microtensile bond 
strengths of two adhesives – a three-step etch-and-rinse ad-
hesive and a two-step self-etch adhesive – bonded to euge-
nol-contaminated dentin. The null hypothesis tested was 
that application of p-toluenesulfinic acid sodium salt does 
not improve the μTBS of either a three-step etch-and-rinse or 
two-step self-etch adhesive to eugenol-contaminated dentin. 

Fig 1  Experimental design.
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MATERIALS AND METHODS

Specimen Preparation 

Sixty extracted, caries-free human third molars were col-
lected following ethical approval from the Human Experi-
mentation Committee, Faculty of Dentistry, Chiang Mai Uni-
versity (No.13/2015). All teeth were kept frozen and used 
within 1 month after extraction, and the teeth were soaked 
in distilled water at room temperature for 30 min just be-
fore the study. The occlusal enamel was cut perpendicular 
to the long axis of the tooth using a low-speed diamond 
saw (IsoMet Low Speed Saw, Buehler; Lake Bluff, IL, USA) 
under water lubrication until flat surfaces of sound dentin 
were exposed. The occlusal dentin surfaces were then pol-
ished using 600-grit silicon carbide paper under running 
water to form a standardized smear layer. 

The specimens were randomly divided into two groups of 
surface conditions, untreated (control group) and eugenol-
contaminated dentin surfaces (30 teeth per group). In the 
latter group, ZOE (IRM, Dentsply Sirona; York, PA, USA), 
which was mixed according to the manufacturer’s instruc-
tions, was placed on the dentin surfaces and left for 20 
min to set. Subsequently, the teeth in both groups were 
stored in distilled water at 37°C for 24 h. After the storage 
period, IRM was mechanically removed with an ultrasonic 
scaler (P5 Newtron XS [LED], Satelec; Merignac, France) at 
the frequency of 28 kHz until the dentin surfaces were visu-
ally free of material, and then the dentin surfaces were 

cleaned with pumice and water slurry using a slow-speed 
handpiece for 60 s and rinsed off with an air-water stream 
for 30 s. Specimens in the control group were also cleaned 
and rinsed following the same protocol. Dentin surfaces 
were checked for any remaining IRM using dental loupes 
(Zeiss EyeMag Pro, Carl Zeiss Meditec; Oberkochen, Ger-
many) at 4.5X magnification, and the cleansing step was 
repeated if remnants of IRM existed.

The specimens in each group were then divided into 3 
subgroups according to the surface treatment with p-tolu-
enesulfinic acid sodium salt (Accel) protocols (10 teeth per 
subgroup): no treatment, 10-s Accel application, and 30-s 
Accel application. Specimens in each subgroup were allo-
cated to two adhesives (n = 5): a three-step etch-and-rinse 
adhesive (Optibond FL, Kerr; Orange, CA, USA), or a two-
step self-etch adhesive (Clearfil SE Bond, Kuraray Noritake; 
Tokyo, Japan). For Optibond FL, Accel was applied on moist 
acid-etched dentin and then air dried. For Clearfil SE Bond, 
Accel was applied before the priming step and then air 
dried (Fig 1). The materials used in this study and bonding 
procedures are listed in Table 1.

After the bonding procedures, three 1.5-mm layers of 
composite (Filtex Z350 XT, 3M Oral Care; St Paul, MN, USA) 
were built up on the dentin surface. Each layer was photo-
polymerized for 20 s with a light-curing unit (Bluephase, Ivo-
clar Vivadent; Schaan, Liechtenstein) using high power 
mode with light intensity of 1100 mW/cm2 ± 10%. The 
specimens were stored in distilled water at 37°C for 24 h.

Table 1  Materials used in this study

Material Composition Procedures Batch number

IRM (Dentsply Sirona; 
York, PA, USA)

Powder: Zinc oxide, PMMA powder, pigment
Liquid: Eugenol, Acetic acid

Mix powder and liquid (ratio 1:1) 
using spatulation technique for 
1 min.

150311

OptiBond FL (Kerr; 
Orange, CA, USA)

Etchant: 37.5% phosphoric acid
Primer: HEMA, GPDM, PAMM, ethanol, water, 
photoinitiator 
Bond: bis-GMA, HEMA, GPDM, TEG-DMA, 
UDMA, filler, photoinitiator

Apply etchant for 15 s, rinse for 15 
s, gently air dry for 5 s.
Lightly scrub the surface with primer 
for 15 s, gently air dry for 5 s.
Apply a thin coat of bonding agent 
and light cure for 20 s.

5372636

Clearfil SE Bond (Kuraray 
Noritake; Tokyo, Japan)

Primer: water, 10-MDP, HEMA, hydrophilic 
dimethacrylate, N,N-diethanol-p-toluidine  
Bond: 10-MDP, bis-GMA, HEMA, hydrophobic 
dimethacrylate, CQ, N,N-diethanol-p-toluidine, 
silanated colloidal silica

Apply primer for 20 s, gently air blow.
Apply bonding and light cure for 
10 s.

000001

Accel (Sun Medical; 
Shiga, Japan)

p-toluenesulfinic acid sodium salt, ethanol, 
water

Apply Accel to dentin surface and dry 
with air.

GW1

Filtex Z350 XT (3M Oral 
Care; St Paul, MN, USA)

Resin: bis-GMA, HEMA, TEG-DMA, PEG-DMA, 
bis-EMA 
Fillers: silica, zirconia 

Apply Filtex Z350 XT to dentin 
surface and light cure for 20 s.

N702140

Abbreviations: PMMA: polymethyl methacrylate; HEMA: 2-hydroxyethyl methacrylate; GPDM: glycerol phosphate dimethacrylate; PAMM: phthalic acid  
monoethylmethacrylate; bis-GMA: 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane; TEG-DMA: triethyleneglycol dimethacrylate; UDMA: urethane  
dimethacrylate; 10-MDP: 10-methacryloyloxydecyl dihydrogen phosphate; CQ: camphorquinone; PEG-DMA: poly(ethylene glycol) dimethacrylate; bis-EMA:  
ethoxylated bisphenol A dimethacrylate.
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ure, which were classified as follows:44 cohesive failure in 
dentin (>75% of the fracture occurred in dentin); cohesive 
failure in composite (>75% of the fracture occurred in resin 
composite); adhesive failure between adhesive resin and 
composite (>75% of the fracture occurred between adhe-
sive resin and composite); adhesive failure between adhe-
sive resin and dentin (>75% of the fracture occurred be-
tween adhesive resin and dentin); mixed failure (mixed 
adhesive failures and/or cohesive failures)

Failure modes were analyzed for statistically significant dif-
ferences by the nonparametric Pearson’s chi-squared test. All 
statistical analyses were performed at a confidence level of 
95% using SPSS software version 22 (SPSS; Chicago, IL, USA).

RESULTS

Microtensile Bond Strength (μTBS) Test

The μTBS results are summarized in Table 2. There were no 

Microtensile Bond Strength Test (μTBS)

The bonded specimens were sectioned perpendicular to the 
adhesive interface using a low-speed diamond saw under 
water cooling into beam-shaped sticks with a surface area 
of 1 x 1 mm2. Only 9 sticks from the center of each tooth 
were selected and attached to a universal testing machine 
(Universal Testing Machine, Instron 5566, Instron Thailand; 
Bangkok, Thailand) with a cyanoacrylate adhesive (Model 
Repair II blue, Dentsply Sirona; York, PA, USA). μTBS was 
tested at a crosshead speed of 1 mm/min (Fig 2). The data 
were analyzed for statistically significant differences using 
a three-way ANOVA and post-hoc Dunnett’s T3 multiple com-
parisons at significance level of 0.05.

Failure Mode Analysis

After the μTBS test, the dentin sides of the fractured speci-
mens in each group were observed using a scanning elec-
tron microscope (SEM, JSM6610LV SEM, JEOL; Tokyo, 
Japan) at 90X magnification to categorize the modes of fail-

Fig 2  Schematic illustration of sample prep-
aration for microtensile bond strength test.Bonded specimen Stored in water 

37°C 24 h
Sectioned into 1 x 1 mm2

Composite

SEM observation for 
failure mode

Subjected to microtensile 
bond strength test Dentin

Table 2  Mean and standard deviations of microtensile bond strengths to 

dentin (MPa) (n = 45)

Application 
time of 
Accel

Control groups Eugenol-contaminated groups

Optibond FL Clearfil SE Bond Optibond FL Clearfil SE Bond

0 s 52.52 (3.41)A,1 46.03 (5.21)A,2 34.39 (5.84)A,3 20.14 (4.16)A,4

10 s 54.39 (3.91)AB,1 49.36 (3.77)AB,2 41.53 (5.00)B,3 37.19 (4.80)B,4

30 s 55.63 (4.25)B,1 51.06 (4.25)B,2 46.70 (4.00)C,3 42.83 (3.92)C,3

A different capital superscript letter means a significant difference within columns, a different  
superscript number means a significant difference within rows (p < 0.05).
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pre-test failures in this study. Three-way ANOVA revealed 
that there were significant differences between three fac-
tors: surface conditions (eugenol contamination), surface 
treatments (Accel application), and adhesives (p < 0.001). 
There were significant interactions between; eugenol-con-
tamination and Accel application (p < 0.001), adhesives 
and Accel application (p < 0.001), and eugenol-contamina-
tion and adhesives (p = 0.005). Dunnett’s T3 test revealed 
that the eugenol-contaminated groups exhibited significantly 
lower μTBS than the control groups (p < 0.05) in all coun-
terpart conditions. The 30-s Accel application on eugenol-
contaminated dentin showed significantly higher μTBS than 
10 s of Accel or no Accel application (p < 0.05). Optibond 
FL yielded significantly higher μTBS than did Clearfil SE 
Bond (p < 0.05). 

Failure Mode Analysis

The failure modes are summarized in Fig 3. In all groups, 
the majority of failures were adhesive between the adhesive 
resin and dentin. There was no cohesive failure in dentin in 
this study. There were no significant differences in failure 
modes between the experimental groups (p = 0.963). A rep-
resentative specimen of adhesive failure between adhesive 

resin and dentin in the eugenol-contaminated group bonded 
with Clearfil SE Bond shows remnants of IRM in dentinal 
tubules (Fig 4).

DISCUSSION

The μTBS results of this study showed that application of 
Accel improved the dentin bond strengths of both three-step 
etch-and-rinse and two-step self-etch adhesives to eugenol-
contaminated dentin. Thus, the null hypothesis was rejected. 

Even when ZOE temporary cement has set, unreacted 
zinc oxide particles remain in a matrix of zinc eugenolate.13 
Moreover, the setting reaction upon contacting water is re-
versible via the hydroxylation of eugenolate on the surface 
of cement, which could release free eugenol and zinc hy-
droxide.1,13,16 The released eugenol was shown to diffuse 
into the underlying dentin, peaking at 24 h after restoration 
and then decreasing slowly afterwards.20 Quantitative ana-
lysis has revealed that the amount of eugenol was most 
concentrated on the dentin surface adjacent to the restora-
tion and decreased as the depth increased towards the 
pulp.19 In the present study, the IRM-restored specimens 

Failure modes
Fig 3  Bar graphs illustrate the number of 
each failure mode in each group (n = 45).

a b

Fig 4  SEM images of adhesive failure be-
tween adhesive resin and dentin in the eu-
genol-contaminated group. A: 90X; B: 500X; 
arrows show the remnants of IRM in dentinal 
tubules.

Group 12

Group 11

Group 9

Group 8

Group 7

Group 6

Group 5

Group 4

Group 3

Group 2

Group 1

cohesive failure in dentin

cohesive failure in composite

adhesive failure between composite and adhesive resin

adhesive failure between adhesive resin and dentin

mixed failure
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were immersed in distilled water for 24 h to imitate the oral 
condition, where hydrolysis of eugenolate generally oc-
curred1,24 and released free eugenol, which accumulated 
mostly in the smear layer. To a certain extent, it also dif-
fused through the underlying dentin.19,21 

The remnants of IRM can negatively affect composite-
dentin bonding by decreasing the surface wettability of den-
tin,35,43 and interfering with the infiltration of adhesive 
resin.24 Moreover, eugenol is regarded as a radical scaven-
ger,14,16,40 which can competitively react with the free radi-
cals generated in polymerization of adhesive resin or com-
posite.3,13 This interaction would lead to a decrease in the 
rate of initiation or an increase in the rate of termination for 
a given monomer/polymer system.3 Hence, the eugenol-
containing residues on the dentin could compromise the 
strength of the composite-dentin bond.3,8,36,47 In the pres-
ent study, the eugenol-contaminated groups exhibited lower 
μTBS than the control groups with both etch-and-rinse and 
self-etch adhesives, although the eugenol-contaminated 
dentin surface was cleaned with pumice and water slurry for 
60 s and rinsed off with an air water stream for 30 s.

The mechanical removal methods, explorer/air-water 
technique or pumice cleansing, could not completely re-
move the eugenol-containing temporary cement from the 
dentin subsurface, especially in the dentinal tubules (Fig 4), 
even though the surfaces appeared to be clean.17,43 More-
over, the chemical removal method using phosphoric acid 
etching could significantly reduce the quantity of eugenol 
remnants on dentin,24 but SEM observation revealed granu-
lar substances remaining on the dentin surface, occluding 
dentinal tubules.43 An etch-and-rinse adhesive may be more 
advantageous in bonding to eugenol-contaminated dentin 
than a self-etch adhesive, because phosphoric acid etching 
with an etch-and-rinse adhesive can completely dissolve the 
smear layer, and the subsequent water rinsing can wash 
away some remnants of the eugenol before adhesive resin 
application. On the other hand, a self-etch adhesive would 
incorporate the smear layer, including any residual IRM, 
into the hybridized complex,46 in which remnants of eugenol 
could prevent the chemical interaction between acidic 
monomer and hydroxyapatite, because eugenol is capable 
of forming a complex with calcium in hydroxyapatite.34 This 
may explain why the μTBS to the eugenol-contaminated den-
tin of Optibond FL was higher than that of Clearfil SE Bond. 

In the present study, the application of Accel could sig-
nificantly increase the compromised μTBS of both adhesives 
to eugenol-contaminated dentin. Accel contains p-toluene-
sulfinic acid sodium salt in ethanol. The p-toluenesulfinic 
acid sodium salt possesses reducing ability,33,41 which 
might react with the hydroxyl group of the eugenol molecule 
and counteract the polymerization-inhibiting potency of eu-
genol. Additionally, it is well known that the p-toluenesul-
finic acid sodium salt can accelerate the polymerization 
process.4 These effects of p-toluenesulfinic acid sodium 
salt would contribute to an improvement of bond strength to 
eugenol-contaminated dentin. On the other hand, ethanol in 
Accel might extract free eugenol from eugenol-contaminated 
dentin, because alcohol can extract free eugenol from ZOE 

compound,28 although it cannot dissolve zinc eugenolate 
nor react with free eugenol. A previous study investigated 
the bond strength of a self-etch adhesive to dentin after 
cleaning eugenol-based sealer with 10 min application of 
70% ethanol which, followed by irrigation with physiological 
saline solution, restored the bond strength.7 In this study, 
Accel pre-treatment, after mechanical removal of IRM, was 
performed by application for 10 and 30 s, followed by air 
drying. Therefore, eugenol components diffused on the den-
tin surface could not have been completely removed before 
the bonding procedure, because of the shorter application 
time with Accel and no rinsing. The extraction of eugenol by 
ethanol in Accel might play a minor role in improving bond 
strength to eugenol-contaminated dentin. 

Longer Accel application (30 s) increased the μTBS of 
both adhesives to eugenol-contaminated dentin, in which 
there were no significant differences in the 30-s application 
group between etch-and-rinse and self-etch adhesives. Un-
fortunately, Accel application could not completely restore 
the compromised μTBS of the two adhesives to eugenol-
contaminated dentin in this study. On the other hand, when 
Accel was applied to non-contaminated dentin for 30 s, 
μTBS significantly increased for both adhesives. Sodium 
sulfinate salt is a well-known chemical co-initiator in chemi-
cal-curing adhesives, reacting with acidic resin monomers 
to produce either phenyl or benzenesulfonyl free radicals 
and initiate the polymerization reaction via the self-curing 
mechanism of the adhesive resin.23 This could be attrib-
uted to the polymerization acceleration ability of p-toluene-
sulfinic acid sodium salt, which might increase the degree 
of conversion of the adhesive resin, even when the adhe-
sive resin is photopolymerized,4 thus leading to an increase 
in dentin bond strengths. Furthermore, Accel contains etha-
nol as a solvent. Ethanol can also replace and repel water 
in smear layer-covered dentin, resulting in the reduced in-
trinsic wetness,42 which can improve dentin bonding dura-
bility of self-etch adhesives.10 Further research is neces-
sary on the pretreatment effect of polymerization 
accelerators with ethanol on the dentin bonding perfor-
mance of etch-and-rinse and self-etch adhesives.

CONCLUSIONS

The application of Accel on eugenol-contaminated dentin 
improved the μTBS of both the three-step etch-and-rinse 
adhesive (Optibond FL) and two-step self-etch adhesive 
(Clearfil SE Bond). On the other hand, bonding to eugenol-
contaminated dentin with the etch-and-rinse adhesive was 
more successful than with the self-etch adhesive.
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Clinical relevance: Eugenol could negatively affect po-
lymerization of resin-based materials. The application 
of polymerization accelerator used in this study could 
effectively retrieve compromised bond strength of com-
posite bonded to eugenol-contaminated dentin.


